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Spatiotemporal dynamics of discrete sine-Gordon lattices with sinusoidal couplings
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The spatiotemporal dynamics of a damped sine-Gordon chain with sinusoidal nearest-neighbor couplings
driven by a constant uniform force are discussed. The velocity characteristics of the chain versus the external
force are shown. Dynamics in the high- and low-velocity regimes are investigated. It is found that in the
high-velocity regime, the dynamics is dominated by rotating modes, the velocity shows a branching bifurcation
feature, while in the low-velocity regime, the velocity exhibits steplike dynamical transitions, broken by the
destruction of strong resonances.@S1063-651X~98!08201-4#
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I. INTRODUCTION

Spatiotemporal dynamics in systems with many degr
of freedom has gained great interest during the last 20 y
because of their complicated spatiotemporal patterns
possible applications in many fields, such as turbulence, n
ral networks, biology, secure telecommunications, s
tiotemporal control of chaos, stochastic resonanc
Josephson-junction lattices, etc.@1–5#. Research on the dis
crete sine-Gordon lattice has also seen a surge of inte
recently since it can be used to model many physical s
tems, such as dislocations, magnetic and ferromagnetic
main walls, spin- and charge-density waves, and array
Josephson junctions@6,7#. The discrete sine-Gordon cha
corresponds to the so-called Frenkel-Kontorova~FK! model
in the conservative case, which was mainly studied in
ploring the commensurate-incommensurate phase transi
of the ground state@8# and discussing its dc and ac respons
@9,10#. Recently, the damped dynamics of this model w
harmonic coupling were numerically, theoretically, and e
perimentally investigated in relating to the fluxon dynam
of one-dimensional Josephson-junction arrays@7,11#. In the
damped case, numerous metastable states exist and p
significant role, and this will lead to complicated spatiote
poral patterns and dynamics.

The damped FK chain driven by an external force can
described by the equation of motion of a coupled chain
pendula

ẍ j1g ẋ j1sinxj5K@V8~xj 112xj2a!

2V8~xj2xj 212a!#1F, ~1!

where V(x) describes the coupling law between neare
neighbor elements,g, K, a, andF are the friction coefficient,
coupling strength, static length of the chain, and the exte
driving force, respectively. The coupling mechanism of t
discrete sine-Gordon chain is generally nonlinear~anhar-
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monic! in the applications to real physical systems. For a r
chain of atoms or molecules, the coupling law may be
Lennard-Jones, Toda, or Morse type@12#. For a DNA chain,
the couplings of the helices and base pairs are complic
rotator interactions. In the discussions of antiferroelectric l
uid crystals, the coupling mechanism of dipoles and layer
also of the sinusoidal form@13#. The nonconvex coupling
cases are more interesting than the convex cases. In thi
per, we are concerned with the sinusoidal~rotator! coupling
case

V~x!512cosx. ~2!

This case is especially realistic when the local degree
freedom is an angle, as in dipolar or magnetic couplin
whereV(x) is a periodic function. The sinusoidal coupling
one of the simplest forms. This kind of coupling has be
considered for coupled rotator systems@14#, base pair rota-
tions in DNA @13#, magnetic Heisenberg models@15# and the
one-dimensional~1D! chiral XY model@16#, granular super-
conductors@17#, and Josephson-junction array ladders@18#.
Moreover, for strong-coupling strengths, the sinusoidal int
action can be approximated by the harmonic form. In Fig
two kinds of couplings are shown. Only in the vicinity of th
equilibrium position will the two kinds of couplings coin
cide. It is very interesting to note that these two cases red
to the same sine-Gordon equation in the continuum limit.
fact, there is not a unique way to discretize a continu
equation. Sometimes nonlinear approaches are more sig
cant because nonlinear localized modes are intrinsically
crete. Therefore it is necessary to study nonlinear coup
cases as they may correspond to some real physically
crete systems.

This paper is organized as follows. In Sec. II we discu
the dynamics in the high-velocity regime. We observe tha
this regime, rotating modes dominate, as theoretically p
dicted @19,20#. The rotating modes result in a branching b
furcation of thev-F ~wherev is the average velocity of the
chain! relation. In Sec. III, the dynamics in the low-velocit
regime is analyzed. Dynamical transitions between reson
steps are investigated, and these steps can be theoret
1139 © 1998 The American Physical Society
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predicted by using the harmonic-coupling formula propos
in @11#. We also find that some steps disappear due to
destruction of traveling-wave solutions. This leads to
emergence of new dynamical phases. Section IV gives s
concluding remarks.

II. HIGH-VELOCITY REGIME: ROTATING MODES

By insertingV(x)512cosx into Eq. ~2!, we rewrite the
equation of motion:

ẍ j1g ẋ j1sinxj5K@sin~xj 112xj2a!

2sin~xj2xj 212a!#1F. ~3!

This equation is highly nonlinear. Only in some limit case
for example,K→`, can it be analytically treated. Hence w
study its dynamics mainly by using numerical simulation
The fourth-order Runge-Kutta integration algorithm is us
and the time step is adjusted according to the numerical
curacy. Periodic boundary conditions are added, i
xj 1N(t)5xj (t)12pM , where M is an integer that count
the net number of kinks trapped in the ring. Therefore
frustrationd5M /N and the spring constanta52pd.

In the case of large couplingK, the system can be we
described by the continuum sine-Gordon chain. In this ca
it was found that there exists a critical chain velocityvc

52pdAK that separates two kinds of dynamics~kinks!
@21,22#. When v,vc , the motion is that of localized soli
tons, which is called thelow-velocity regime. Whenv.vc ,
the motion is characterized by a whirling wave, i.e., the m
ing kink is strongly extended. We call this region thehigh-
velocity regime. Let us first study the dynamics in the high
velocity regime. Figure 2 gives a typical evolution of th
velocities for an eight-particle chain. It has been found t
although there are couplings between the elements, their
tions are inhomogeneous; i.e., some particles rotate wi
finite velocity while others remain pinned in the potent
wells. This is a consequence of both nonconvex coupling
bistability. Recalling the phase-space structure of a sin
pendulum in the underdamped case, one finds that there
two kinds of attractors with one fixed point and the oth

FIG. 1. A schematic plot of two kinds of coupling forms
V(x)5

1
2 x2 and V(x)512cos(x). Only in a small region near the

origin do the two functions coincide.
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running solutions. This leads to bistability@23#. However,
distinct difference between the single-particle a
sinusoidal-coupling cases can be found in Fig. 2. It is sho
that oscillation occurs for both rotating and pinned particl
which is the result of coupling, and this will not happen f
the single-particle case. Our numerical picture also supp
the prediction of Takeno and Peyrard@19#, who proved the
existence of the rotating mode in the conservative sinusoi
coupled sine-Gordon chain. This was also related to wha
discussed in@20#. The existence of rotating modes is a co
sequence of the particular topology of the sinusoidal c
pling, which is also a localized excitation like breathers.

In Fig. 3, we plot the average velocityv versus the exter-
nal driving forceF for N58, K51, andM51,2,3. It can be
seen that, in the high-velocity regime, there is a bifurcat
of v branches, where each branch can be expressed by

v i~ t !5v i
01dv isin~vt1w i !, ~4!

wherev i
0 describes the rotating frequency of thei th particle,

the second term corresponds to the oscillation around
central frequency, anddv i , v, and w i are the oscillation
amplitude, the oscillating frequency, and the phase, resp
tively. The rotating frequency can be expressed by

v i
05H 0 for a pinned particle

F/g for a rotating particle.
~5!

Thus the average velocity~averaged over time and lattice!
will be a quantized one:

v5
nF

Ng
, ~6!

which corresponds to the numerical branches, wheren
51, . . . ,N. Each numerical point is obtained by startin
from randomly chosen initial motions of the chain. The do
ted lines are theoretical results~6!. One can find that they
agree precisely with the numerical results. The mechan
behind this quantization is due to the nonconvexity of t
coupling. This leads to many metastable states. It can als
observed from Fig. 3 that, forM.1, the bottom few lines

FIG. 2. The evolution of the velocities of an eight-particle sy
tem with the sinusoidal coupling. Rotating modes (v.0) emerge
due to the nonconvexity of the coupling. Both the rotating a
pinned particles are oscillatory.
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57 1141SPATIOTEMPORAL DYNAMICS OF DISCRETE SINE- . . .
disappear. This is a consequence of multikinks. The thre
old forces for emergences of different lines are not the sa
Lines with larger slopes have larger threshold values. For
n51 branch, the thresholdFc is just the threshold of the
emergence of bistability for a single driven damped pen
lum. This is also the smallest threshold.

The rotating modes are stable only for the weak coupl
case. If one increases the coupling strengthK, the dynamics
approaches that of a convex-coupling case. In Fig. 4, we g
thev-F characteristics forN58, M51, andK55,10. It can
be found that branches ofn,N disappear; only then5N
branch survives, i.e., all particles in the chain will rota
This is natural when one uses a larger coupling stren
because stronger couplings will cause the rotating mode
become unstable. The convex part will strongly affect
rotating modes. It should also be noted that several unst
regions can be observed on the high-velocity line. These
gions become smaller when one increasesF. This is a re-
sidual effect of sinusoidal coupling, where the nonconv
effect can still play a role. In Fig. 5, evolutions of velocitie
for one of the particles in these regions are shown. We
that motions in small-F unstable regions are irregular whi
they are complicated periodic or quasiperiodic motions
larger-F unstable regions.

One may also observe the dynamics in the low-veloc
regime in the above figures. They are more interest
Hence we now turn our discussion to dynamics in this
gion.

III. LOW-VELOCITY REGIME: RESONANT-STEP
DYNAMICAL TRANSITIONS

For a sine-Gordon chain with harmonic coupling, dyna
ics in the low-velocity regime exhibit soliton behavior. B

FIG. 3. Thev-F characteristics of the sinusoidal coupling cas
for N58, g50.1, K51.0, andM51,2,3. Branching bifurcations
are shown in the high-velocity regime. Resonance-step transit
can also be observed in the low-velocity regime.
h-
e.
e

-

g

e

.
h,
to
e
le

e-

x

d

n

y
.
-

-

because of the discreteness of the chain, the attractor in
region is a distorted traveling wave, which is composed o
moving kink and small superimposed oscillating wave. T
will cause the radiation of a small linear wave of a movi

FIG. 5. The motion of one particle in the unstable boxes of F
4~a!. Quasiperiodic motion can be observed for smaller forces
the unstable regions with larger forces, the motion is modula
periodic.

s

ns

FIG. 4. Thev-F plot for M51, K55.0, and 10.0. Other param
eters are the same as Fig. 3. Rotating modes are destroyed d
the role of convex part of the coupling. Several unstable regi
resulting from the nonconvex effect are labeled by boxes.
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kink in its wake. We have given a mean-field description
soliton dynamics in this regime and theoretically predict
the resonance behavior@11#.

In the sinusoidal coupling case, similar behaviors on
occur for a system with multikinks (M.1). In Fig. 3 for
M51, we find that in the low-velocity regime, the velocit
remains zero; i.e., the chain remains pinned until the exter
force exceeds a critical value that indicates the emergenc
bistability. When one increases the coupling strengthK, we
find distinct differences, i.e., steplike resonances occur~see
Fig. 4, K55,10), which is similar to the harmonic case. I
fact, the convex part of the coupling takes effects in th
case. On the other hand, nonconvex effects can still pla
role in some regimes. For example, in Fig. 4~a!, near the
boundary between the high- and low-velocity regimes, no
convex coupling effects are significant, the zero veloc
branch reappears. Also in Fig. 4~b! ~inset!, the enlarged plot
of a step shows a negative slope and a small unstable gap
be observed. Figures 3~b! and 3~c! show the situations for
M.1. Dynamics in the low-velocity regime is rather com
plicated. In Fig. 3~b!, for M52, the depinning forceFc is
very small, and zero velocity reappears around 0.1 to 0
This is also a nonconvex effect.

In Fig. 6, we enlarge the low-velocity regime of Fig. 3~c!
for M53 in order to give a more precise analysis. In order
make a good comparison, we also plot thev-F curve for the
harmonic case where all parameters remain the same as
sinusoidal case. For both cases, steplike dynamical tra
tions can be observed. Transitions between these states
to the gaps in Fig. 6. We studied the mechanisms of the
behavior for the harmonic case. The existence of resona
steps is a time-scale competition between kink propagat
and its radiated phonon waves. When the two frequenc
satisfy the resonance condition, the mode is locked; he

FIG. 6. Thev-F relations for both harmonic~circles! and sinu-
soidal ~crosses! cases with the same parameters:N58, M53, K
51.0, andg50.1. Step transitions can be observed, and all ste
for the harmonic-coupling case are labeled by resonances (m1 ,m2).
Good agreement is shown for small forces. Giant steps that
destroyed completely or in part are labeled by boxes~the 1:1 reso-
nance is completely destroyed, hence it is not labeled!. The de-
stroyed branches are disordered phases.
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steps occur. We have derived a formula for all the steps@11#:

v~m1 ,m2!5
m2

m1
Ab14Ksin2S m1dp

m2
D , ~7!

where (m1 ,m2) is a pair of integers that describes the res
nance between kinks and linear waves,d is the frustration,
andb is a contraction factor that we introduced in terms
mean-field treatment to consider the commensurability
fect. Physicallyb can be interpreted as the depinning for
that is needed to overcome the Pierels-Nabarro~PN! barrier
and continuously move the static kink along the chain@11#.
Steps in Fig. 6 can be well recognized by using Eq.~7! and
all resonance steps are labeled for the harmonic case. It
be found that for a small force, steps for the sinusoidal c
can exist and agree well with those for the harmonic ca
However, there are several regions where the velocity jum
down to a lower branch. This kind of dynamical transitio
did not occur for the harmonic coupling case; hence this
also a typical nonconvex effect. A careful comparison b
tween these two cases indicates thatthese dropoffs corre-
spond to the destruction of strong resonances. The most sig-
nificant step that is completely destroyed is the 1
resonance, where the traveling-wave solution becomes
stable. In addition, 2:1, 3:2, and other giant resonance s
are also partly destroyed. In Fig. 7, we give the evolution
xi(t) in the destructed regions. A typically good travelin
wave is also shown in order to make a comparison. It

s

re

FIG. 7. The evolution ofxj (t) for ordered and disordered
phases. The motion on the ordered step is quite a good trave
wave, while the motion is irregular and even chaotic in disorde
phases.
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vividly observed that in the resonance-destructed regions
traveling wave becomes unstable and disordered mo
takes place. This can be qualitatively understood. While
kink frequency and its linear wave satisfy the resonance c
dition, for those strong enough resonances, they are so st
that the linear wave around the kink becomes unstable an
amplified, this will in turn destroy the traveling wave, an
eventually the dynamics becomes chaotic and resonant s
disappear. The 1:1-destructed region is a typical chaotic
gion, and this also leads to the connection between low-
high-velocity regimes. We call the 1:1 branch adisordered
phase. Numerical studies indicate that the motion on th
whole branch is chaotic, and the preserved order is c
pletely destroyed.

It is very interesting to note that this mechanism is va
especially for incommensurate cases. For example, whend is
the golden meandG5A521/2, the 1:1 resonance will al
ways be destroyed for intermediate coupling cases, i.e.,
disordered phase always exists. This is another route for
transition between low- and high-velocity regimes, whi
occurs only for nonconvex cases. In Fig. 8, we give thev-F
characteristics of the golden mean approach by the Fibon

FIG. 8. Thev-F characteristics for the approach to golden me
dG5(A521)/2 via the Fibonacci sequenced5

5
8,

8
13,

13
21, . . . . The

disordered phase 1:1 can always be observed.
he
n
e
n-
ng
is

ps
e-
d

-

he
he

ci

sequenced5 5
8,

8
13, and 13

21 , . . . ; it can beeasily found that at
Fc.0.318 the chain velocity always drops to the lower d
order phase, where the 1:1 resonance causes the trav
wave to be unstable.

IV. CONCLUDING REMARKS

In this paper, we have studied the dynamics of the d
crete sine-Gordon chain with a sinusoidal coupling. Comp
cated spatiotemporal patterns exist in this nonlinear lat
system. In the high-velocity regime, the attractors are
rotating waves. The motion of the chain may be inhomo
neous, i.e., some particles can remain pinned while oth
rotate. This is a consequence of both nonconvex discrete
and bistability. This inhomogeneity leads to a branching
furcation of thev-F characteristics. For stronger coupling
branching bifurcation is destroyed and only the collect
motion branch survives. A nonconvex effect still can be o
served along this branch. In the low-velocity regime, t
attractor in a large region is the traveling wave. This is sim
lar to the harmonic-coupling case, where the convexity of
interaction leads to traveling-wave propagation. Resona
step transitions can be well predicted by the formula~7!.
However, due to the intrinsic nonconvexity of the sinusoid
coupling, some resonant steps are completely or partly
stroyed, leading to the disordered phase. This causes
traveling wave to be unstable, hence the motion becom
irregular and even chaotic.

The present model and results may be applied to so
experimental fields, such as granular superconductors
Josephson-junction ladders. In the experimental studie
the discrete Josephson transmission lines with stacked j
tions@24# and coupled long Josephson junctions@25#, similar
behaviors also exist. Moreover, oscillating breathers and
tating states have also been found. In the investigation
Josephson-junction ladders@26#, the same coupling mode
corresponding to the 1D chiralXY model has been propose
@16#. The ground state and relaxation phenomena had b
fully explored. But to our knowledge, no discussions on t
damped driven dynamics of this model have been found.
real experimental environment, such considerations may g
more insight into the intrinsic properties of the system. T
present work may be a first step in exploring the spatiote
poral behaviors in this model. Moreover, much knowled
can be captured in the investigation of this kind of disord
system, compared to the continuum sine-Gordon system
important issue concerns the noise effect in this system,
fluctuations will induce transitions between different d
namical states. This problem is now under exploration.
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