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Spatiotemporal dynamics of discrete sine-Gordon lattices with sinusoidal couplings
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The spatiotemporal dynamics of a damped sine-Gordon chain with sinusoidal nearest-neighbor couplings
driven by a constant uniform force are discussed. The velocity characteristics of the chain versus the external
force are shown. Dynamics in the high- and low-velocity regimes are investigated. It is found that in the
high-velocity regime, the dynamics is dominated by rotating modes, the velocity shows a branching bifurcation
feature, while in the low-velocity regime, the velocity exhibits steplike dynamical transitions, broken by the
destruction of strong resonanc§€S1063-651X98)08201-4

PACS numbg(s): 03.20:+i, 05.45+b, 05.40+]

[. INTRODUCTION monic) in the applications to real physical systems. For a real
chain of atoms or molecules, the coupling law may be the
Spatiotemporal dynamics in systems with many degreekennard-Jones, Toda, or Morse tyfd®]. For a DNA chain,
of freedom has gained great interest during the last 20 yeatfe couplings of the helices and base pairs are complicated
because of their complicated spatiotemporal patterns anebtator interactions. In the discussions of antiferroelectric lig-
possible applications in many fields, such as turbulence, newtd crystals, the coupling mechanism of dipoles and layers is
ral networks, biology, secure telecommunications, spaalso of the sinusoidal formil3]. The nonconvex coupling
tiotemporal control of chaos, stochastic resonances;ases are more interesting than the convex cases. In this pa-
Josephson-junction lattices, efd—5]. Research on the dis- per, we are concerned with the sinusoidaltatoy coupling
crete sine-Gordon lattice has also seen a surge of interesase
recently since it can be used to model many physical sys-
tems, such as dislocations, magnetic and ferromagnetic do- V(X)=1—cox. 2
main walls, spin- and charge-density waves, and arrays of
Josephson junctiongs,7]. The discrete sine-Gordon chain This case is especially realistic when the local degree of
corresponds to the so-called Frenkel-KontorgvK) model  freedom is an angle, as in dipolar or magnetic couplings,
in the conservative case, which was mainly studied in exwhereV(x) is a periodic function. The sinusoidal coupling is
ploring the commensurate-incommensurate phase transitiorsme of the simplest forms. This kind of coupling has been
of the ground statg8] and discussing its dc and ac responsesconsidered for coupled rotator systefid], base pair rota-
[9,10. Recently, the damped dynamics of this model withtions in DNA[13], magnetic Heisenberg modélks] and the
harmonic coupling were numerically, theoretically, and ex-one-dimensionallD) chiral XY model[16], granular super-
perimentally investigated in relating to the fluxon dynamicsconductorg17], and Josephson-junction array laddgts].
of one-dimensional Josephson-junction arrBgd1]. In the  Moreover, for strong-coupling strengths, the sinusoidal inter-
damped case, numerous metastable states exist and playa@ion can be approximated by the harmonic form. In Fig. 1,
significant role, and this will lead to complicated spatiotem-two kinds of couplings are shown. Only in the vicinity of the
poral patterns and dynamics. equilibrium position will the two kinds of couplings coin-
The damped FK chain driven by an external force can beide. It is very interesting to note that these two cases reduce
described by the equation of motion of a coupled chain oto the same sine-Gordon equation in the continuum limit. In

pendula fact, there is not a unique way to discretize a continuum
equation. Sometimes nonlinear approaches are more signifi-
5'(j+ yg(j+simj:|<[v'(xj+l_xj_a) cant because nor_llinear localized modes are ir_ltrinsically (_jis-
crete. Therefore it is necessary to study nonlinear coupling
—V'(Xj=Xj-1—a)]+F, (1)  cases as they may correspond to some real physically dis-

crete systems.
where V(x) describes the coupling law between nearest- This paper is organized as follows. In Sec. Il we discuss
neighbor elementsy, K, a, andF are the friction coefficient, the dynamics in the high-velocity regime. We observe that in
coupling strength, static length of the chain, and the externahis regime, rotating modes dominate, as theoretically pre-
driving force, respectively. The coupling mechanism of thedicted[19,20. The rotating modes result in a branching bi-
discrete sine-Gordon chain is generally nonlinganhar-  furcation of thev-F (wherev is the average velocity of the
chain relation. In Sec. lll, the dynamics in the low-velocity
regime is analyzed. Dynamical transitions between resonant
*Electronic address: zgzheng@public2.bta.net.cn. steps are investigated, and these steps can be theoretically
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FIG. 2. The evolution of the velocities of an eight-particle sys-
FIG. 1. A schematic plot of two kinds of coupling forms, tem with the sinusoidal coupling. Rotating modes>0) emerge
V(x)=3x? and V(x)=1—cosf). Only in a small region near the due to the nonconvexity of the coupling. Both the rotating and
origin do the two functions coincide. pinned particles are oscillatory.

predicted by using the harmonic-coupling formula proposedunning solutions. This leads to bistabilif23]. However,

in [11]. We also find that some steps disappear due to thdistinct difference between the single-particle and
destruction of traveling-wave solutions. This leads to thesinusoidal-coupling cases can be found in Fig. 2. It is shown
emergence of new dynamical phases. Section IV gives sontbat oscillation occurs for both rotating and pinned particles,

concluding remarks. which is the result of coupling, and this will not happen for
the single-particle case. Our numerical picture also supports
IIl. HIGH-VELOCITY REGIME: ROTATING MODES the prediction of Takeno and Peyrg], who proved the

_ _ _ _ existence of the rotating mode in the conservative sinusoidal-
By insertingV(x) = 1—cos into Eq. (2), we rewrite the  coupled sine-Gordon chain. This was also related to what is

equation of motion: discussed if20]. The existence of rotating modes is a con-
B ) sequence of the particular topology of the sinusoidal cou-
Xj+ X+ sinx; =K[sin(X; ; 1 —Xj—a) pling, which is also a localized excitation like breathers.
. In Fig. 3, we plot the average velocityversus the exter-
—sin(x;—x;_1—a)]+F. 3 g P g by

nal driving forceF for N=8,K=1, andM=1,2,3. It can be
seen that, in the high-velocity regime, there is a bifurcation

This equation is highly nonlinear. Only in some limit cases, branches, where each branch can be expressed by

for example K— o, can it be analytically treated. Hence we
study its dynamics mainly by using numerical simulations. vi(t)=vi0+ ovisin(wt+ ¢;), 4

The fourth-order Runge-Kutta integration algorithm is used

and the time step is adjusted according to the numerical agvherev? describes the rotating frequency of tiik particle,
curacy. Periodic boundary conditions are added, i.e.the second term corresponds to the oscillation around the
Xj+n()=x;(t) +27M, whereM is an integer that counts central frequency, andv;, o, and ¢; are the oscillation
the net number of kinks trapped in the ring. Therefore theamplitude, the oscillating frequency, and the phase, respec-

frustration 5=M/N and the spring constaat= 2. tively. The rotating frequency can be expressed by
In the case of large coupling, the system can be well

described by the continuum sine-Gordon chain. In this case, 0 0 for a pinned particle

it was found that there exists a critical chain velocity ""|F/y for arotating particle.

=278JK that separates two kinds of dynami¢sinks)
[21,22. Whenv<u,, the motion is that of localized soli- Thus the average velocitfaveraged over time and lattice
tons, which is called théow-velocity regimeWhenv >v,, will be a quantized one:

the motion is characterized by a whirling wave, i.e., the mov-

ing kink is strongly extended. We call this region thigh- _nF
velocity regimeLet us first study the dynamics in the high- v= N_y
velocity regime. Figure 2 gives a typical evolution of the

velocities for an eight-particle chain. It has been found thatvhich corresponds to the numerical branches, where
although there are couplings between the elements, their me=1, .. . N. Each numerical point is obtained by starting
tions are inhomogeneous; i.e., some particles rotate with &om randomly chosen initial motions of the chain. The dot-
finite velocity while others remain pinned in the potential ted lines are theoretical resul§). One can find that they
wells. This is a consequence of both nonconvex coupling andgree precisely with the numerical results. The mechanism
bistability. Recalling the phase-space structure of a singléehind this quantization is due to the nonconvexity of the
pendulum in the underdamped case, one finds that there aceupling. This leads to many metastable states. It can also be
two kinds of attractors with one fixed point and the otherobserved from Fig. 3 that, fov>1, the bottom few lines

(6)
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FIG. 3. Thev-F characteristics of the sinusoidal coupling cases
for N=8, y=0.1, K=1.0, andM =1,2,3. Branching bifurcations
are shown in the high-velocity regime. Resonance-step transitions

can also be observed in the low-velocity regime.
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FIG. 4. Thev-F plot forM=1,K=5.0, and 10.0. Other param-
eters are the same as Fig. 3. Rotating modes are destroyed due to
the role of convex part of the coupling. Several unstable regions
resulting from the nonconvex effect are labeled by boxes.

because of the discreteness of the chain, the attractor in this
region is a distorted traveling wave, which is composed of a
moving kink and small superimposed oscillating wave. This
will cause the radiation of a small linear wave of a moving

disappear. This is a consequence of multikinks. The thresh-
old forces for emergences of different lines are not the same.
Lines with larger slopes have larger threshold values. For the
n=1 branch, the threshol&. is just the threshold of the
emergence of bistability for a single driven damped pendu-
lum. This is also the smallest threshold.

The rotating modes are stable only for the weak coupling
case. If one increases the coupling strengthhe dynamics
approaches that of a convex-coupling case. In Fig. 4, we give
thev-F characteristics foN=8, M=1, andK=5,10. It can
be found that branches aof<N disappear; only the=N
branch survives, i.e., all particles in the chain will rotate.
This is natural when one uses a larger coupling strength,
because stronger couplings will cause the rotating modes tc
become unstable. The convex part will strongly affect the
rotating modes. It should also be noted that several unstable
regions can be observed on the high-velocity line. These re-
gions become smaller when one increaBesThis is a re-
sidual effect of sinusoidal coupling, where the nonconvex
effect can still play a role. In Fig. 5, evolutions of velocities
for one of the particles in these regions are shown. We find
that motions in smalF unstable regions are irregular while
they are complicated periodic or quasiperiodic motions in
larger+ unstable regions.

One may also observe the dynamics in the low-velocity
regime in the above figures. They are more interesting.
Hence we now turn our discussion to dynamics in this re-
gion.

[ll. LOW-VELOCITY REGIME: RESONANT-STEP
DYNAMICAL TRANSITIONS
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FIG. 5. The motion of one particle in the unstable boxes of Fig.

4(a). Quasiperiodic motion can be observed for smaller forces. In
For a sine-Gordon chain with harmonic coupling, dynam-the unstable regions with larger forces, the motion is modulated
ics in the low-velocity regime exhibit soliton behavior. But periodic.
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soidal (crossep cases with the same parametdxs=8, M =3, K 220+
=1.0, andy=0.1. Step transitions can be observed, and all step: 200
for the harmonic-coupling case are labeled by resonanoegt,). SR
Good agreement is shown for small forces. Giant steps that ar 1801
destroyed completely or in part are labeled by boftee 1:1 reso- 160

nance is completely destroyed, hence it is not label@étie de-
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kink in its wake. We have given a mean-field description of

soliton dynamics in this regime and theoretically predicted FIG. 7. The evolution ofx;(t) for ordered and disordered
the resonance behavipt1]. phases. The motion on the ordered step is quite a good traveling

In the sinusoidal coupling case, similar behaviors 0n|ywave, while the motion is irregular and even chaotic in disordered

occur for a system with multikinksM>1). In Fig. 3 for  Phases.
M=1, we find that in the low-velocity regime, the velocity )
remains zero: i.e., the chain remains pinned until the externaitePS occur. We have derived a formula for all the sféf
force exceeds a critical value that indicates the emergence of
pistab_ilit_y. Wh_en one inc_reases th_e coupling strerigttwe v(my,my)= %\/B+4Ksin2
find distinct differences, i.e., steplike resonances o¢sae my
Fig. 4, K=5,10), which is similar to the harmonic case. In
fact, the convex part of the coupling takes effects in thiswhere fn;,m,) is a pair of integers that describes the reso-
case. On the other hand, nonconvex effects can still play aance between kinks and linear wavésis the frustration,
role in some regimes. For example, in Figay near the andg is a contraction factor that we introduced in terms of
boundary between the high- and low-velocity regimes, nonmean-field treatment to consider the commensurability ef-
convex coupling effects are significant, the zero velocityfect. PhysicallyB can be interpreted as the depinning force
branch reappears. Also in Fig(} (insey, the enlarged plot that is needed to overcome the Pierels-Nab&pid) barrier
of a step shows a negative slope and a small unstable gap cand continuously move the static kink along the chdif).
be observed. Figures(ty and 3c) show the situations for Steps in Fig. 6 can be well recognized by using &g.and
M>1. Dynamics in the low-velocity regime is rather com- all resonance steps are labeled for the harmonic case. It may
plicated. In Fig. 8), for M=2, the depinning forcé. is  be found that for a small force, steps for the sinusoidal case
very small, and zero velocity reappears around 0.1 to 0.Zan exist and agree well with those for the harmonic case.
This is also a nonconvex effect. However, there are several regions where the velocity jumps
In Fig. 6, we enlarge the low-velocity regime of FigcB  down to a lower branch. This kind of dynamical transition
for M= 3 in order to give a more precise analysis. In order todid not occur for the harmonic coupling case; hence this is
make a good comparison, we also plot th€& curve for the also a typical nonconvex effect. A careful comparison be-
harmonic case where all parameters remain the same as ttveeen these two cases indicates ttiz#se dropoffs corre-
sinusoidal case. For both cases, steplike dynamical transspond to the destruction of strong resonancdse most sig-
tions can be observed. Transitions between these states leaificant step that is completely destroyed is the 1:1
to the gaps in Fig. 6. We studied the mechanisms of the gapesonance, where the traveling-wave solution becomes un-
behavior for the harmonic case. The existence of resonancgable. In addition, 2:1, 3:2, and other giant resonance steps
steps is a time-scale competition between kink propagatioare also partly destroyed. In Fig. 7, we give the evolution of
and its radiated phonon waves. When the two frequencies;(t) in the destructed regions. A typically good traveling
satisfy the resonance condition, the mode is locked; henceave is also shown in order to make a comparison. It is

, )

m1577
my
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sequenceéd= 3, &, and23, ... it can beeasily found that at

3l@ 3=5/8 F.=0.318 the chain velocity always drops to the lower dis-
order phase, where the 1:1 resonance causes the traveling
wave to be unstable.

IV. CONCLUDING REMARKS

In this paper, we have studied the dynamics of the dis-
crete sine-Gordon chain with a sinusoidal coupling. Compli-
0 . v . cated spatiotemporal patterns exist in this nonlinear lattice
0.0 0.1 0.2 0.3 system. In the high-velocity regime, the attractors are the
rotating waves. The motion of the chain may be inhomoge-
3{(b) 6=8/13 neous, i.e., some particles can remain pinned while others
rotate. This is a consequence of both nonconvex discreteness
and bistability. This inhomogeneity leads to a branching bi-
furcation of thev-F characteristics. For stronger couplings,
branching bifurcation is destroyed and only the collective
motion branch survives. A nonconvex effect still can be ob-
served along this branch. In the low-velocity regime, the
0 : : : attractor in a large region is the traveling wave. This is simi-
0.0 01 0.2 0.3 lar to the harmonic-coupling case, where the convexity of the
interaction leads to traveling-wave propagation. Resonant-
step transitions can be well predicted by the form(a
However, due to the intrinsic nonconvexity of the sinusoidal
2 coupling, some resonant steps are completely or partly de-
stroyed, leading to the disordered phase. This causes the
traveling wave to be unstable, hence the motion becomes
irregular and even chaotic.

The present model and results may be applied to some
0.0 01 02 03 experimental fields, such as granular superconductors and

F Josephson-junction ladders. In the experimental studies of
the discrete Josephson transmission lines with stacked junc-
tions[24] and coupled long Josephson juncti¢@s], similar
behaviors also exist. Moreover, oscillating breathers and ro-
tating states have also been found. In the investigation of
Josephson-junction laddef26], the same coupling model

vividly observed that in the resonance-destructed regions, thgPrrésponding to the 1D chiralY model has been proposed
traveling wave becomes unstable and disordered motioht6]: The ground state and relaxation phenomena had been
takes place. This can be qualitatively understood. While thdu!ly €xplored. But to our knowledge, no discussions on the
kink frequency and its linear wave satisfy the resonance cord@mped driven dynamics of this model have been found. In a
dition, for those strong enough resonances, they are so strofig2! €xperimental environment, such considerations may give
that the linear wave around the kink becomes unstable and [80r€ insight into the intrinsic properties of the system. The
amplified, this will in turn destroy the traveling wave, and Présent work may be a first step in exploring the spatiotem-
eventually the dynamics becomes chaotic and resonant step8'@l behaviors in this model. Moreover, much knowledge
disappear. The 1:1-destructed region is a typical chaotic res@n be captured in the mvestl_gatlon qf this kind of disorder
gion, and this also leads to the connection between low- angyStem, compared to the continuum sine-Gordon system. An
high-velocity regimes. We call the 1:1 branctdsordered important issue concerns the noise effect in thl_s system, for
phase Numerical studies indicate that the motion on thisfluctl_Jatlons will m_duce transitions between d|ffer_ent dy-
whole branch is chaotic, and the preserved order is compamical states. This problem is now under exploration.
pletely destroyed.

It is very interesting to note that this mechanism is valid
especially for incommensurate cases. For example, when One of the author¢Z.Z.) thanks Professor David Stroud
the golden meansg=5—1/2, the 1:1 resonance will al- and Professor N. M. Plakida for useful discussions on super-
ways be destroyed for intermediate coupling cases, i.e., theonductivities and Josephson-junction arrays and Professor
disordered phase always exists. This is another route for thie. H. Tang for discussions on the ground-state problem. This
transition between low- and high-velocity regimes, whichwork was supported in part by the Research Grant Council
occurs only for nonconvex cases. In Fig. 8, we givedhe RGC and a Hong Kong Baptist University faculty research
characteristics of the golden mean approach by the Fibonacgrant (FRG).

3] () 5=13/21

FIG. 8. Thev-F characteristics for the approach to golden mean
8¢=(y/5—1)/2 via the Fibonacci sequené=2, <, 33, .... The
disordered phase 1:1 can always be observed.
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